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Received 25 November 1974 

Abstract. A realization is given, in terms of Dirac matrices and suitable SL(2, c) generators, 
of Gel’fand-Yaglom matrices associated with the simplest parity-invariant wave equations 
for particles with half-odd-integral spin. Commutation and anti-commutation relations 
for these matrices are thereby derived, replacing those given previously by Lorente, 
Huddleston and Roman, which are shown to be incorrect. 

1. Introduction and summary 

Relativistic wave equations of the form : 

(L,P” - K ) W )  = 0 

p’ = iajax,, p = 0, 1,2, 3 

have been widely studied in varying degrees of generality, notably by Gel’fand and 
Yaglom (1948). Here $ denotes an indexed column of functions and the index space 
carries a representation of SL(2, c), either finite- or infinite-dimensional. The generators 
J P v (  = - .Iv,) of this representation are matrices (or operators) acting in the index space 
and satisfying 

i V , V  9 J p J  = g,pJw + gvd,, - gvpJ,, - gguJvp. (2) 
(The metric tensor is diagonal, with go, = - g l l  = -g22 = -g33 = 1.) The matrices 
L, and K also act in the index space and satisfy 

in order to secure the relativistic invariance of the wave equation. 
In the cases usually discussed, K is a scalar multiple of the unit matrix, whence 

equation (4) is trivially satisfied. Furthermore, the representation of SL(2, c) is assumed 
to be reducible to the direct sum of a finite number of irreducible representations. I t  is 
known that only for some representations of this type do there exist non-trivial L, 
satisfying equation (3), and in every such case the matrix elements of L, have been 
determined in a particular basis (Gel’fand and Yaglom 1948, Gel’fand et a1 1963). 

However, these results cannot be regarded as providing a completely satisfactory 
classification of wave equations of the type indicated, as Wightman (1968) has pointed 
out. For example, Dirac’s equation for the electron is of this form, but the structure of 
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the equation in this case is not well revealed by writing down an explicit representation 
of the Dirac matrices. It is of greater value in that case to realize that the matrices 
can be characterized completely, and in a representation-independent way, by specifying 
the algebraic relations they satisfy, in particular (writing L, = y,, in this case): 

[“r’,, rvl = -4iJ,, ( 5 )  

{r, 17”) = 2 g r v .  (6) 

and 

Therefore, in view of the potential importance of Gel’fand-Yaglom equations in 
the description of particles, there is some motivation for further study of the algebraic 
properties of the associated matrices L,. On the other hand there seems to be little 
chance of classifying all equations of this type in terms of such properties. One could 
propose algebraic relations for the L,, perhaps generalizing equations ( 5 ) ,  (6) in some 
way, and thence deduce the form of the corresponding representation of SL(2, c), the 
masses and spins of the particles described by the corresponding equation (l), and so on. 
In this connection one recalls the work of Lubanski (1942), Bhabha (1945) and Harish- 
Chandra (1948) in particular. 

An alternative approach is to select from the set of all Gel’fand-Yaglom equations 
a subset of equations which might be expected to have particularly simple structures, 
and to attempt to find characteristic algebraic properties of the corresponding matrices 
L,. From this point of view there is a great variety of possible subsets to consider, and 
one must therefore select only types likely to be of special interest. 

In this paper we shall consider what are, as has previously been indicated (Feldman 
and Mathews 1966, Stoyanov and Todorov 1968), the simplest parity-invariant equations 
for particles with half-odd-integral spin. For a typical such equation the wavefunctions 
IC/ belong to a representation of SL(2, c) labelled 

C(a) = (3, a)@( -3, CO, 
where c1 is some corresponding complex number. (Irreducible representations are 
labelled ( k o ,  c) where 2k0 is integral and c is complex. The invariants of SL(2, c)  are 
$J,,,JPv and 

where j,,, = &pvFJw with c 0 1 2 3  = - 1 .  On the representation (ko , c ) ,  $J,,Jpv and Q 
take the values ( k i  + c2 - 1) and 2k0c respectively.) Then for given a, 

$J,,J,~ = a2-& (8) 

Q2 = u2. (9) 

while Q takes the value a on (3, a) and - a  on ( -  $, a), so that 

If U-; is integral and la\ 2 i, then C(a) is finite-dimensional; if a is pure imaginary, 
then C(c1) is infinite-dimensional and unitary ; and for all other values of a, C(a) is infinite- 
dimensional and non-unitary. The representations C(a) and C( - a) are equivalent. 
It is evident from the results of Gel’fand and Yaglom (1948) that for each value of a there 
are non-trivial L, satisfying equation (3). These matrices ‘link’ the representations 
(3, a) and (-i, a), as does the parity transformation. Indeed, once the generators J,, 
of C(a) are completely specified and the precise form of the parity transformation 
between ($, a) and ( -4, a) is defined, the requirement of parity invariance of the wave 
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equation (1) completely specifies the L,, up to multiplication by an arbitrary complex 
scalar. This is clearly illustrated in the case a = t, corresponding to Dirac’s equation, 
which is typical in this respect. The arbitrary complex scalar multiplying L, may be 
chosen in any way which is convenient without loss of generality as regards equation (l), 
where K is by assumption an arbitrary scalar multiple of the unit matrix. 

Our main results follow from the presentation, for arbitrary a, of a realization of the 
L, in terms of more familiar entities-Dirac matrices and suitable SL(2, c) generators. 
This realization is given in 0 3. Using it in 9 4, we are able to calculate in particular the 
commutator and anti-commutator of L, and L,, obtaining (for a suitable choice of the 
scalar multiplying L,) 

and 

{L,, L,} = 2 g , v ( ~ 2 - ~ ) - { J p ~  J,“}. (1 1) 

These relations generalize those given above for Dirac matrices which, as has already 
been mentioned, now appear in the particular case a = 3. There the relations ( 5 ) ,  (6 )  imply 
that Q = 3/2y,(= 3/2iy0y,y2y,), that I,,, = iJ,,y5 and that {Jlra, J,“} = *gpv ,  so that 
relations (10) and (11) reduce to (5) and (6) respectively. 

The infinite-dimensional case a = 0 is also of special interest, as the L, are then the 
(half-odd-integer spin) Majorana matrices. There Q = 0 and (10) reduces to the well 
known commutation relation for these matrices. The result ( l l ) ,  with a = 0, agrees 
with that given for the Majorana matrices by Bohm (1968). 

In the general case some information can be obtained from equations (8) and (11) 
about the mass and spin spectra of the corresponding wave equation. We have (Bracken 
1970) 

(L,?f)2 = w,, LvlP”PV 

= (a2-i)P,?f-t{J,,, J,bjP’PV 
= $ p , f  - wpwl’ 

where w, = Jpvpv is the Pauli-Lubanski vector, so that 

copp +{ Jpo,  J,b)p“~’-~J,,J”p,pa. 

Hence equation (1) implies that 

If II/ is a wavefunction for a particle with mass m and spin s, then in addition to (1) and (1 3), 

POP“* = m2* 
w,w@* = -s(s+ l)m2* 

so that 

(s++)2m211/ = 

The possible values of s in equation (14) are determined by the SU(2) content of the 
representation C(a) and we can conclude that, if we take K to be real and positive in the 
wave equation, it describes in particular particles with the following masses and spins : 
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(U )  jnite-dimensional cases : a - 3 integral, la1 2 3. 

(b) injnite-dimensional cases 

The latter result is well known in the case of the Majorana equation. In all the infinite- 
dimensional cases it can be expected that there are also space-like and light-like solutions 
of the wave equation (Bargmann 1949, Riihl 1967, Grodsky and Streater 1968). In any 
case the result (13) relates the two invariants of the Poincare group and so restricts the 
representations of that group which can appear. 

The results obtained here differ significantly from those presented by Lorente et a1 
(1973) (to be referred to as LHR), who also have considered the class of matrices L, 
under discussion here, as well as those appearing in parity-invariant equations (1) when 
the representation of SL(2, C) involved is 

K(a)  = (a,  ;)@(a, -)I 
with 2a integral. In the next section we show directly that the results of LHR are in- 
correct. 

Fronsdal and White (1967) also have considered the equations associated with the 
representations K ( a )  and have obtained (in disagreement with LHR) a mass and spin 
relationship of the general form m = K/(s+;) .  This leads us to believe that the results 
(IO), (1 1) will be found to hold also in these cases (rather than those presented by LHR), 
but our method does not enable us to verify that here. 

The commutation relation (10) suggests that, except in the Dirac and Majorana 
cases, the matrices L, and J, ,  do not belong to a Lie algebra. Nevertheless we feel that 
the relations (10) and (11) are sufficiently simple to be of interest. 

2. The results of Lorente, Huddleston and Roman 

According to LHR the following equations are satisfied by the L, for arbitrary a : 
(i) [L,, Lvl = -iJpv 

(ii) [L,  , LvLv] = 0 
(iii) {L,, Lv) = ~ a 2 - - t ) g p v - { J w o , J v u } .  
The results (i) and (iii) are in conflict with relations (lo), (Il), but the deduction of 

(ii) and (iii) by LHR is based on (i), which can easily be shown to be incorrect, except in 
the Dirac and Majorana cases. While (iii) is also correct in those special cases, it can be 
concluded that it is not so in general; and while (ii) is in general correct, the proof given 
by LHR, being based on (i), is in general false. 

In order to arrive at the equation (i) LHR argue that, since in C(a) no irreducible 
representation of SL(2,c) appears more than once, ‘the Lie algebra of the J w  and L” 
must close and becomes exactly that of Sp(4, R)’. This argument is simply wrong. In 
order to see an inconsistency it is sufficient to consider the finite-dimensional cases, 
when the representation of SL(2, c) is in each case C(j+))  for some positive integer j .  
If the LHR argument, and consequently the result (i), were correct, there would have to 
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be for each j a representation of Sp(4, R )  whose SL(2, c) content is just C( j+ i ) .  However, 
the reduction of finite-dimensional representations of Sp(4, R )  (or SO(5)) with respect 
to SL(2,c) (or SO(4)) is well known (Murnaghan 1938, Lubanski 1942, Bhabha 1945, 
Corson 1953) and shows that there are no such representations, except in the case j = 1 
(the Dirac representation). An irreducible finite-dimensional representation of Sp(4, R )  
can be labelled [ p ,  41, where 2p, 24 and p - q are integers, and p 2 4 2 0. The reduction 
with respect to SL(2, c) is 

where the summations are restricted to integer values of 9 - ko and p + 1 - c. Only in 
the case p = 4 = 4 with a = 3 ( j  = 1) is the representation of SL(2, c) of the general form 
(t, a)@( - t ,  a). 

In a similar way it is seen that the LHR result (i) (and hence at least the derivations of 
(ii) and (iii)) is invalid also in the case of the representation K(a). 

We have mentioned that the result (ii) is correct, although incorrectly derived by 
LHR. In fact (ii) follows at once from our result (1 1) which, taken with (8), implies that 
L,Lp is a multiple by 2aZ -3 of the unit matrix. 

3. A realization of the Gel’fand-Yaglom matrices 

In order to prove the results (10, l l )  we introduce a realization of the matrices L, in 
terms of Dirac matrices and suitable SL(2, c) generators. This construction, involving 
only objects more familiar than the Gel’fand-Yaglom matrices themselves, is perhaps of 
intrinsic interest apart from its value in enabling us to deduce the aforementioned results. 

Suppose L,, are the generators of the representation (0, a -4) where a is an arbitrary 
complex constant, and S,, are the generators of the Dirac representation C($), 

s,, = :i[Y,, r,l. 
It is not hard to see that (Harish-Chandra 1947) 

(0, a-;, 0 C($) = C(a) 0 C(a- l), (16) 
so that J,, = L,, + S , ,  are generators of the representation C(a) @ C(a- 1). These 
two representations are distinguished by the corresponding eigenvalues 

f f 2 - 3  49 a2 - 2a ++, 
of 3Jp ,Jp” .  Clearly it must be possible to construct from the L,, and the y p  a reducible 
realization of the Gel’fand-Yaglom matrices corresponding to the representation of 
SL(2,c) generated by J , , ,  and to isolate irreducible realizations by fixing the value 
of i J , , JQv .  

We introduce the operator Q as in (7) and note that in this case 

Q = ~ d R + t )  

R = L,,Spv + 1 

R 2  = )L,,L”+ 1 

where 
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and 

(R+;)’ = Q’ = iJ,,J”++’ 4. (20) 

L, = i { y , ,  R} (21) 

Define 

and note that since by virtue of equation (19) [y,, R’] = 0, one has 

[ L , , R ]  = 0. 

Since it is also clear that {L,,  y S )  = 0, one has 

and 

[L,, iJ,,,J\’] = 0. (24) 
I t  follows from the last two equations that the L, leave separately invariant the sub- 
spaces associated with C(a) and C(a - l), but link the irreducible representations of 
SL(2,C) within each such subspace. They are therefore (up to multiplication by an 
arbitrary constant) the required reducible realization of the Gel’fand-Yaglom matrices. 
(Note that in the case L,, = 0 (R = 1, r = i), L,  reduces trivially to y,.) We shall work 
with this reducible realization to deduce the results (lo), (11). The results for the irre- 
ducible matrices corresponding to the representation C(a) of SL(2, C) are obtained 
by setting iJurJp’ = 2’ -$, or equivalently, in view of equations (19) and (20), by setting 
R 2-l 2. 

4. The commutation and anti-commutation relations 

We begin by proving the result ( 1  1) (Bracken 1970). Note firstly that 

L, = -iD,+;-,R 
where 

D = -‘i[.i i,. RI = L,,;”, 

and that, in consequence, 

{D,, R )  = 0. 
Then 

{ L , , L , )  = - . (D , ,D , i - i {D , . ;~ ,R j - i {D , ,~ ,R~+I ;1 ,R , ; ’ ,R ) .  

I t  is readily checked that 

D,D, = - LpuLab - i(L,pL,o - L,,L,p)Spu 
so that 

- {D,, D,) = L,,L‘,+L,,Lu,+2g,,(R- l)+2(L,,S‘,+L,,Su,). 

Furthermore, using equation (27) we find 

{D,, y , R }  = [D,, 7,JR 

= -4iL,,S“,R 
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so that 

-i{D,,y,R}-i{D,, y,R) = -4(L,,Sb,+L,,Sa,)R. (32) 

Using equation (26) we find 

{Y,R, y,R) = 2g,,R2 - 2i(~,,D, + ?,D,)R 

= 2g,,R2+4(L,,SU,+ L,,S",)R. 

Combining equations (28), (30), (32) and (33) and noting that 

+s,,s.v = ; 
s S" = -1 1 
pa v ? Y , Y V - r g , v ~  

(33) 

(34) 

we obtain 

{ L,, L,) = L,,Lbv + L,,L", + S,,Sbv + SvoSdp + 2(L,,Sb, + LvaSb,) + 2g,,(R2 + R - $1, 
= 2g,,()J,,JP0 + $1 - { J,, 9 J,") 

which reduces to ( 1  1) as required, when )J,Jpb = a2 - :. 

{ R ,  S, , }  = [ R ,  S,,l+ 2S,,R 

In order to prove the result (IO) we begin by noting that 

= - 2i(L,,Sb, - Lv,Sb,) + 2S,,R 

which, from the definition of R and the properties of Dirac matrices, reduces to 

IR,S,,) = L , , - i y s ~ p v + 2 ~ , v  (35) 

where the dual tensor of L,, is defined by analogy with I,,,. Now from equation (25) we 
have 

We note that from equation (26), 

- [D,, D,l = fi[D,, ?,RI - +i[D,, ?,RI 

= i{R, LPv)  

- i[D,, v,l + $D,, Y,] = 2i[R, L,,], 

and that 

= 2i{R, L p y }  -4iL,,R, 

so that combining equations ( 3 6 x 3 8 )  we have 

[L,, L,] = i{R, L,,}(2R+ 1)-4iJ,,R2 

= i{ R ,  J, , }  (2R + 1) - 4iJ,,R2 - i{  R ,  S, , }  (2R + 1 )  

= 2iJW,R-i{R,S,,)(2R+ 1). 

(37) 

(38) 
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Now using equation (35) and noting that 

S,,  = - i y s S p v ,  

[L,, L,] = - iJ,, - y J p v ( 2 ~  + 1) 

= - iJ,, - 2j,,,Q 

we have 

as required. 

(39) 
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